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Science Goal: Understand global scale patterns in biosphere 
processes 

 

Earth Science Questions: 

– When and where do ecosystem disturbances occur? 

– What is the scale and location of human-induced land cover 
change and its impact? 

– How are ocean, atmosphere and land processes coupled? 

 

Mining  Eco-Climate Data 

 Data sets need to answer the questions above 

are becoming available 
 Remote Sensing data from satellites and weather radars 

 Data from in-situ sensors and sensor networks 

 Output from climate and earth system models 

 Geographic Information Systems 

 
 Data guided processes can complement 

hypothesis guided data analysis to develop 

predictive insights for use by climate 

scientists, policy makers and community at 

large. 
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Data Mining Challenges 

l Spatio-temporal nature of data 

– spatial and temporal autocorrelation. 

– Multi-scale/Multi-resolution nature 
 

l Scalability 

– Size of Earth Science data sets can be very large, 
For example, for each time instance, 

2.5°x 2.5°:10K locations for the globe  

250m x 250m: ~10 billion 

50m x 50m : ~250 billion 
 

l High-dimensionality 
 

l Noise and missing values 
 

l Long-range spatial dependence 
 

l Long memory temporal processes 
 

l Nonlinear processes, Non-Stationarity 
 

l Fusing multiple sources of data 
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Case Studies 

 

1. Understanding climate change 

 

2. Monitoring of global vegetation cover 
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Understanding Climate Change - Physics based 

Approach 

General Circulation Models: Mathematical 

models with physical equations based on 

fluid dynamics 

 

Figure Courtesy: ORNL 
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Projection of temperature increase under different 

Special Report on Emissions Scenarios (SRES) 
by 24 different GCM configurations from 16 research 
centers used in the Intergovernmental Panel on 

Climate Change (IPCC) 4th Assessment Report. 

A1B:  “integrated world” balance of fuels 

A2:    “divided world” local fuels 

B1:    “integrated world” environmentally conscious 

IPCC (2007) 
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Understanding Climate Change - Physics based 

Approach 

General Circulation Models: Mathematical 

models with physical equations based on 

fluid dynamics 

 

Figure Courtesy: ORNL 

A
n

o
m

a
li

e
s 

fr
o

m
 1

8
8
0

-1
9
1
9
 
(K

) 

Parameterization 

and non-linearity 

of differential 

equations are 

sources for 

uncertainty! 

 

Cell 

Clouds 

Land 
Ocean 

“The sad truth of climate science 
is that the most crucial 
information is the least reliable”  
(Nature, 2010) 

Physics-based models are essential but not adequate 
– Relatively reliable predictions at global scale for ancillary variables such as 

temperature 

– Least reliable predictions for variables that are crucial for impact assessment 

such as regional precipitation 

Regional hydrology exhibits large variations among 
major IPCC model projections  

Disagreement between IPCC models 
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NSF Expedition: Understanding Climate Change - A Data-Driven Approach 

Predictive Modeling  

 Enable predictive modeling 

of typical and extreme 

behavior from multivariate 

spatio-temporal data 
 

Relationship Mining 
 Enable discovery of 

complex dependence 

structures: non-linear 

associations or long range 

spatial dependencies  

Complex Networks  
 Enable studying of collective 

behavior of interacting eco-

climate systems  

 
 

High Performance Computing 
Enable efficient large-scale 

spatio-temporal analytics on 

exascale HPC platforms with 

complex memory hierarchies 
 

Transformative Computer Science  Research 

•Science Contributions 
– Data-guided uncertainty reduction by blending physics 

models and data analytics 

– A new understanding of the complex nature of the Earth 

system and mechanisms contributing to adverse 

consequences of climate change  

 

•Success Metric 
– Inclusion of data-driven analysis as a standard part of climate 

projections and impact assessment (e.g., for IPCC) 

 

“... data-intensive science [is] …a 

new, fourth paradigm for 

scientific exploration." - Jim Gray 

 

Project aim: 

A new and transformative data-driven 

approach that complements physics-

based models and improves prediction of 

the potential impacts of climate change 

 

http://www.google.com/imgres?imgurl=http://www.healthjockey.com/images/northwestern-university-logo.jpg&imgrefurl=http://www.healthjockey.com/2009/11/20/can-sound-enter-deep-sleep-and-improve-connected-memories-upon-waking/&usg=__wjc-aMCrJIms7YsTj0L7MW011N0=&h=320&w=320&sz=16&hl=en&start=2&sig2=R0cVqmPxqOpTtL93NGlQIw&itbs=1&tbnid=t9WJwYRJBtu9hM:&tbnh=118&tbnw=118&prev=/images?q=North+Western+University+logo&hl=en&gbv=2&tbs=isch:1&ei=YdQOTO-GNpXMNdbRyNgM
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Discovering Climate Teleconnections 

Some Driving Use Cases : Impact of Climate Change 

On Hurricane Frequency, Intensity and 

Location 

On Intensity, Frequency, Duration and 

Distribution of Extreme Events 

Abrupt Climate Change 

Find non-linear 
relationships 

Validate w/ 
hindcasts 

Build hurricane models 

Intensity of heat waves 
projected from CCSM3.0 
climate model using A1F1 

forcing for 2045-54 (top 
panel) and 2090-99 
(bottom panel) 

1930’s Dust Bowl 
 
Affected almost two-thirds of 

the U.S. Centered over the 
agriculturally productive 
Great Plains 
 
Drought initiated by 

anomalous tropical SSTs 
(Teleconnections) 

Land Impact on Temparature 

Southern Osciallation’s 
impact on land 
temperature   
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Summary 
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Monitoring Global Vegetation Cover: 

Motivation  

Forestry 

 Identify degradation in forest cover due to logging, 
conversions to  cropland or plantations and natural 
disasters like fires. 

 Applications: UN REDD+ , national monitoring, reporting 
and verification systems, etc. 

 

Agriculture 

 Identify changes  related to farmland, e.g. conversion to 
biofuels, changes  in cropping patterns and changes in 
productivity. 

 Applications: estimating regional food risks and ecological 
impact of agricultural practices. 

 

Urbanization 

 Identify scale, extent, timing and location of urbanization. 

 Applications: policy planning,  understanding impact on 
microclimate,  water consumption, etc. 
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Traditional Approach for Land Cover 
Change Detection 

 Two or more high quality satellite images 

acquired on different dates are compared for 
change identification. 

 Images differ if a change has occurred between 
the two dates. 

 

 

Limitations: 

 High quality observations are infrequent in many parts of the world such 

as the tropics. 

 Unable to detect changes outside the image acquisition window. 

 Difficult to identify when the change has occurred. 

 Parameters such as rate of change, extent, speed, and pattern of growth 

cannot be derived. 

 Requires training data for each specific change of interest making it 

inherently unsuitable for global analysis. 
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Alternate Approach: Analyzing Vegetation 
Time Series 
 

 Time series analysis can be used for 

 Identifying changes in land cover 

 Identifying when the change occurred i.e. the exact date of change 

 

Vegetation 

Time 

Series 

Images 
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Alternate approach: Analyzing Vegetation Time Series 

 Daily Remote Sensing observations are available 

from MODIS aboard AQUA and TERRA satellites. 

 High temporal frequency (daily for multi-spectral data and 

bi-weekly for the Vegetation index products like EVI, 

FPAR) 

 Time series based approaches can be used for 

 Detection of a greater variety of changes. 

 Identifying when the change occurred 

 Characterization of the type of change eg. abrupt vs 

gradual 

 Near-real time change identification 

 Challenges  

 Poor data quality and  high variability 

 Coarse spatial resolution of observations (250 m)  

 massive data sets: 10 billion locations for the globe 

 

 

 

EVI time series for a location EVI shows density of plant growth on the 

globe. 
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Novel Time Series Change Detection Techniques 

Existing Time series change detection algorithms do not address 

unique characteristics of eco-system data like noise, missing 
values, outliers, high degree of variability (across regions, 
vegetation types, and time). 

 

Segmentation based approaches 

–  Divide time series into homogenous segments. 

–  Boundary of segments become the change points. 

– Useful for detection land cover conversions like forest to 

cropland, etc. 

 

 Prediction based approaches  

– Build a prediction model for the location using previous 
observations. 

– Use the deviation of subsequent observations from the predicted 
value by the model to identify changes/disturbances. 

– Useful for detecting deviations from the normal vegetation model. 

 

 

 

 

 

 

EVI time series for a 250 m by 250 m of land in 

Iowa, USA that changed from fallow land to 

agriculture land. 

 FPAR time series for a forest fire  

location in California, USA. 

• S. Boriah, V. Kumar, M. Steinbach, et al., Land cover change detection: a case study, KDD 2008. 

• V. Mithal, S. Boriah, A. Garg, M. Steinbach, V. Kumar et al., Monitoring global forest cover using data mining. ACM 
Transactions on Intelligent Systems and Technology, 2011 (In Press) 
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Automated Land change Evaluation, Reporting and Tracking 

System (ALERT) 

 
• Planetary Information System for 

assessment of ecosystem disturbances: 

•  Forest fires, droughts, floods, 
logging/deforestation, conversion to 
agriculture 

 

This system will help 

• quantify the carbon impact of these 
changes 

• Understand the relationship to global 
climate variability and human activity 

 

Provide ubiquitous web-based 
access to changes occurring 
across the globe, creating public 
awareness 
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Case Study 1:  

Monitoring Global Forest Cover 
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Fires in Northern Latitude (Canada/Russia) 2001-2009 
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Forest Fires in Canada 

Massive Fires in Canada 

have converted the forests 
into source of carbon in 
the atmosphere. 
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Logging in Canada 

•Logging has produced clear cut areas 

in British Columbia, which can be 

identified as regular, generally 

rectangular shapes.  

 

•The highly reflective clear cut areas 

stand out in marked contrast to the dark 

green forested areas.  
(Source: NASA)   
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Deforestation in the Amazon Rainforest 

Brazil Accounts for 

almost 50% of all humid 

tropical forest clearing, 

nearly 4 times that of the 

next highest country, 

which accounts for 

12.8% of the total. 
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Amazon Deforestation Animation 2001-2009 
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Deforestation in the Amazon Rainforest: Comparison with PRODES 

The blue polygons are deforestation changes marked by PRODES. 

 Yellow dots are events detected by our algorithm. 

PRODES is a system for 

monitoring deforestation 
in Brazilian Amazon. 
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Deforestation in the Amazon Rainforest: Comparison with PRODES 

The blue polygons are deforestation changes marked by PRODES. 

 Yellow dots are events detected by our algorithm. 

PRODES is a system for 

monitoring deforestation 
in Brazilian Amazon. 
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Gold Mine in Protected Forest , Tanzania 
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Reforestation near Guangting Reservoir, China 

http://www.yzhbw.net/news/shownews-22_510.aspx 

http://news.china.com.cn/rollnews/2010-06/04/content_2514320.htm 

 

•These reforestation events are around 

Guangting Reservoir, a reservoir around 100 
miles away from Beijing. 
  

•Around 20 years ago, Guanting Reservoir 
used to play an important role of serving 

water for people in Beijing and Zhangjiakou. 
 
• The environment around the reservoir got 

polluted after years, due to lack of protection.  
 

•It is located very close to Beijing and plays 
an important role, therefore the government 
began to give a comprehensive treatment for 

this area. 
 

•Part of the treatment is planting trees 
around Guangting Reservoir which started in 
2003 and is still going on. News Articles: 
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Detecting other land cover changes 

Damage to vegetation by hurricane Katrina 

Flooding along Ob River, Russia 

Shrinking of Lake Chad, Nigeria 

 

Farm abandonment in Zimbabwe during political 

conflict between 2004 and 2008. 
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ALERT Platform 
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Impact on REDD+   

“The [Peru] government needs to 

spend more than $100m a 

year on high-resolution 

satellite pictures of its billions 

of trees. But …  a computing 

facility developed by the 

Planetary Skin Institute (PSI) 

… might help cut that budget.” 

 

“ALERTS, which was launched at 

Cancún, uses … data-mining 

algorithms developed at the 

University of Minnesota and 

a lot of computing power … to 

spot places where land use 

has changed.” 

- The Economist 12/16/2010 
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Monitoring Forest Cover Change: Challenges Ahead 

Designing robust change detection algorithms 
 

Characterization of land cover changes 
 

Multi-resolution analysis (250m vs 1km vs 4km) 

– Different kinds of changes are visible at different scales 
 

Multivariate analysis 
– Detecting some types of changes (e.g. crop rotations) 

will require additional variables. 
 

Data quality improvement 
– Preprocessing of data using spatio-temporal noise 

removal and smoothing techniques can increase 
performance of change detection. 
 

Incremental update and Real-time detection 
 

Spatial event identification 
 

Spatial-Temporal Querying 
 

Applications in variety of domains:  
– Climate, agriculture, energy 

– Economics, health care, network traffic 

28 
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Summary 

 Data driven discovery methods hold great promise for advancement 

in a variety of scientific disciplines 

 Challenges arise due to the complex nature of eco-climate data sets 

 Significant amounts of missing values, especially in the tropics 

 Multi-scale/Multi-resolution nature, Variability 

 Spatio-temporal autocorrelation 

 Long-range spatial dependence 

 Long memory temporal processes (teleconnections) 

 Nonlinear processes,  Non-Stationarity 

 Fusing multiple sources of data 
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Project websites 
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